Show simple item record

dc.contributor.author Adugna, Muleta
dc.date.accessioned 2023-08-17T11:18:11Z
dc.date.available 2023-08-17T11:18:11Z
dc.date.issued 2023-07
dc.identifier.uri http://hdl.handle.net/123456789/2902
dc.description.abstract A right R-module M is called max-projective provided that each homomorphism ϕ : M → R/I where I is any maximal right ideal,factors through the canonical projection ψ : R → R/I.We call a ring R right GV -ring if all simple singular right R-module are either injective or projective.This thesis attempts to understand the property of max-projective modules over a rings.Among other results we prove that,Over right GV -rings every module is max-projective modules.When we prove weather a direct sum of max-projective modules is max-projective or not, the final result is max-projective modules.Therefore,the direct sum of max-projective modules is max-projective modules.Over right hereditary right noetherian rings,semiperfect rings and right nonsingular right self injective rings, every finitely generated max-projective right modules are projective,and also we prove that over right max-testing rings, every max-projective modules are projective. en_US
dc.language.iso en en_US
dc.publisher Ambo University en_US
dc.subject Projective Modules en_US
dc.subject Max-Projective Modules en_US
dc.title Max-projective modules en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search AmbouIR


Advanced Search

Browse

My Account